Spin Models and Strongly Hyper-Self-Dual Bose-Mesner Algebras
نویسندگان
چکیده
We introduce the notion of hyper-self-duality for Bose-Mesner algebras as a strengthening of formal self-duality. LetM denote a Bose-Mesner algebra on a finite nonempty set X . Fix p ∈ X , and letM∗ and T denote respectively the dual Bose-Mesner algebra and the Terwilliger algebra ofMwith respect to p. By a hyper-duality ofM, we mean an automorphism ψ of T such that ψ(M) =M∗, ψ(M∗) =M; ψ2(A) = tA for all A ∈M; and |X |ψρ is a duality ofM.M is said to be hyper-self-dual whenever there exists a hyper-duality ofM. We say that M is strongly hyper-self-dual whenever there exists a hyper-duality of M which can be expressed as conjugation by an invertible element of T . We show that Bose-Mesner algebras which support a spin model are strongly hyper-self-dual, and we characterize strong hyper-self-duality via the module structure of the associated Terwilliger algebra.
منابع مشابه
On Spin Models, Triply Regular Association Schemes, and Duality
Motivated by the construction of invariants of links in 3-space, we study spin models on graphs for which all edge weights (considered as matrices) belong to the Bose-Mesner algebra of some association scheme. We show that for series-parallel graphs the computation of the partition function can be performed by using seriesparallel reductions of the graph appropriately coupled with operations in...
متن کاملHyper-self-duality of Hamming and Doob graphs
We show that the Doob and Hamming graphs are hyper-self-dual. We then show that although the Doob graphs are formally dual to certain Hamming graphs, they are not hyper-dual to them. We do so by showing that Bose-Mesner subalgebras and Kronecker products of Bose-Mesner algebras inherit hyper-duality.
متن کاملInheritance of hyper-duality in imprimitive Bose-Mesner algebras
We prove the following result concerning the inheritance of hyper-duality by block and quotient Bose-Mesner algebras associated with a hyper-dual pair of imprimitive Bose-Mesner algebras. Let M and M̃ denote Bose-Mesner algebras. Suppose there is a hyper-duality ψ from the subconstituent algebra of M with respect to p to the subconstituent algebra of M̃ with respect to p̃. Also suppose thatM is im...
متن کاملType II Matrices and Their Bose-Mesner Algebras
Type II matrices were introduced in connection with spin models for link invariants. It is known that a pair of Bose-Mesner algebras (called a dual pair) of commutative association schemes are naturally associated with each type II matrix. In this paper, we show that type II matrices whose Bose-Mesner algebras are imprimitive are expressed as so-called generalized tensor products of some type I...
متن کاملNomura algebras of nonsymmetric Hadamard models
Spin models for link invariants were introduced by Jones [7], and their connection to combinatorics was revealed first in [4]. Jaeger and Nomura [6] constructed nonsymmetric spin models for link invariants from Hadamard matrices, and showed that these models give link invariants which depend nontrivially on link orientation. These models are a modification of the Hadamard model originally const...
متن کامل